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Abstract
The temperature dependence of the electronic heat capacity C(T ) was
calculated for a mesoscopically disordered s-wave superconductor treated as
a spatial ensemble of domains with continuously varying superconducting
properties. The domains are assumed to have sizes L > ξ , where ξ is the
coherence length. Each domain is characterized by a certain critical temperature
Tc0 in the range [0, Tc]. The averaging over a broad superconducting gap
distribution leads to 〈C(T )〉 ∝ T 2 for low T , whereas the specific heat anomaly
at Tc is substantially smeared. For narrow gap distributions there exists an
intermediate-T range, where the curve 〈C(T )〉 can be well approximated by
an exponential Bardeen–Cooper–Schrieffer-like dependence with the effective
gap smaller than the weak-coupling value. The results are applicable in the
general case of inhomogeneous superconductors including,e.g., electron-doped
and hole-doped cuprates. The C(T ) data for MgB2, where multiple gaps are
observed, are discussed in more detail.

1. Introduction

The unexpected discovery of the relatively high-temperature (high-T ) superconductor MgB2

with a critical temperature Tc ≈ 40 K [1] has cast considerable doubt on the validity of the
notion that high Tcs are exclusive to substances with a spin-fluctuation-driven Cooper pairing
and, consequently, with a predominantly dx2−y2 -wave symmetry of the superconducting order
parameter. Indeed, an obvious absence of magnetic ions, a considerable isotopic effect [2],
and Bardeen–Cooper–Schrieffer-like (BCS-like) coherent peaks in the optical conductivity [3]
and spin–lattice relaxation [4] are indicative of the conventional s-wave pairing in MgB2. As
for the electron–phonon background of the superconductivity, it also seems highly probable,
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although a fairly exotic multiple-gap scenario is needed to reconcile the available data (see,
e.g., the [5]). It is very remarkable that the multiple-gap conventional Cooper pairing is found
directly in a number of point-contact, tunnelling, and Raman measurements [6]. It is even
more important that the distribution of gaps may be rather broad [7] and spatially resolved [8],
although much controversy exists over the number and widths of gaps in the electron density
of states (DOS).

In actual fact, the order parameter symmetry for MgB2 is not unambiguously determined.
Some muon spin-rotation [9] and optical [3] measurements demonstrate that the low-T
asymptotics of the magnetic field penetration depth λ(T ) is a power-law one. This was
interpreted as either an unconventional superconductivity or at least a highly anisotropic s-
wave pairing. On the other hand, other muon spin-relaxation [10] and microwave surface
impedance [11] investigations show either the conventional exponential low-T behaviour
of λ(T ), although with a reduced gap value in comparison with the BCS result [11], or a
dependence governed by the weighted combination of two exponential terms with different gap
parameters [10]. Measurements of λ(T ) with the help of the same radio-frequency technique
both for sintered pellets and thin films of MgB2 clearly indicated that the degree of disorder
is at least one of the key factors affecting the low-T behaviour [12]. That is, λ(T ) ∝ T 2 for
pellets and λ(T ) is exponential with a reduced value of the energy gap for films.

Thermodynamic measurements might be especially important in determining the low-T
symmetry-based superconducting properties of MgB2, because the minority phases or grain
boundaries do not affect the results substantially, in contrast to, e.g., transport phenomena. The
electronic heat capacity (C(T )) behaviour near Tc is also of great importance for elucidating
the nature of the superconductivity here. And, indeed, there were a lot of specific heat
investigations for MgB2 performed by various groups [13].

The main features of the data for C(T ) are:

(i) small values of the phase transition anomaly �C = Cs − Cn at Tc [13–16] in comparison
to the BCS case [17], when the ratio µ = �C/[γS(Tc)Tc] is equal to µBCS = 12/[7ζ(3)];
and

(ii) deviations from the asymptotic BCS behaviour at T � Tc:

Casympt
BCS (T ) = N(0)

(
2π�5

0

T 3

)1/2

exp

(
−�0

T

)
. (1)

Here γS is a Sommerfeld constant, the subscripts s and n correspond to the superconducting
and normal states, respectively, N(0) is the electron DOS at the Fermi level, �0 is the energy
gap value at T = 0, kB = h̄ = 1. The deviations from equation (1) may be twofold: power-
law-like ∝T 2 [14] and of the form ∝exp(− A

T ) [16, 18], where the constant A is much less than
π
γ

Tc ≈ 1.76Tc, as it should be for a weak-coupling superconductor [17]; γ = 1.78 . . . is the
Euler constant. Thus, the raw specific heat data do not give definite answers to the problems
of the order parameter symmetry and the underlying mechanisms of superconductivity.

In this article, on the basis of the experimentally proven distribution of energy gaps, we
show that both main features of Cs(T ) observed for MgB2 can be explained by the conventional
s-wave superconductivity, so these data can be easily reconciled with other observations [3, 4].
The approach adopted, being an extension of the earlier one [19], is phenomenological because
the origin of the gap distribution is not known precisely. However, in accordance with the
tunnelling data [8], the gap distribution is considered to occur in real space rather than in
k-space, as was suggested, e.g., in [13, 14]. The theoretical description of such spatially
disordered superconductors depends on the ratio between the characteristic superconducting
domain size L and the coherence length ξ [20]. If L > ξ , superconducting properties are
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determined by local values of the order parameter �. Our approach corresponds to these
so-called large-scale inhomogeneities, whereas the small-scale inhomogeneities are matched
by the reverse inequality L < ξ [21, 22]. The quantity ξ is T -dependent and tends to infinity
at Tc. Hence, in the close vicinity of Tc, strictly speaking, all inhomogeneities become small-
scale ones and a divergent correction proportional to ( Tc

T − 1)−1/2 appears in the expression
for C(T ) [21]. Nevertheless, it can be easily shown that for conventional superconductors
including MgB2, the relevant T -range is very small, so its influence on the phase transition
smearing is negligible. Moreover, it has been disclosed recently that the correction for three-
dimensional superconductors is actually finite [22]. Therefore we can identify ξ with the
T -independent coherence length, dependent on the Pippard coherence length ξ0 ≈ h̄vF

π�
and the

mean free path l [17]. Here vF is the Fermi velocity. For MgB2, which can be considered a
clean superconductor [23, 24], the quantities of interest are ξ ≈ ξ0 � l ≈ 600 Å, although
there is a significant scatter of ξ0, inferred from different experiments and for different kinds
of sample [6, 25], so we may estimate this quantity as lying in the range from 25 to 120 Å.
This dispersion of ξ0 qualitatively correlates with the broad spectra of gaps in tunnel and
point-contact spectra [6–8, 13].

So far, our reasoning has ignored the possible influence of the strong-coupling effects on
Cs(T ) in MgB2. At the same time, recent de Haas–van Alphen measurements [26] revealed
strong electron–phonon renormalization of the effective masses, differing for various Fermi
surface sheets. The last property is in agreement with the band-structure calculations [27]. This
circumstance does not require, however, an obligatory accounting for strong-coupling effects
while studying Cs(T ). In fact, the asymptotic low-T dependence of Cs(T ) in the framework of
the Eliashberg theory remains the same as in the weak-coupling limit, although its amplitude
is reduced [28]. On the other hand, the anomaly �C near Tc increases in the strong-coupling
regime [28, 29], the effect being opposite to what is observed for MgB2 [13–16, 30]. This
means that the effects to be accounted for formidably exceed the strong-coupling augmentation.
Hence, hereafter we shall neglect the electron–phonon renormalization altogether.

2. Theory

Let us examine a T -independent configuration of mesoscopic domains, with each domain
having the following properties:

(i) at T = 0, it is described by a certain superconducting order parameter �0 � �max
0 ;

(ii) up to a relevant critical temperature Tc0(�0) = γ

π
�0, it behaves like an isotropic BCS

superconductor, i.e. the superconducting order parameter �(T ) is the Mühlschlegel
function �(T ) = �BCS(�0, T ) [17]; and the electronic specific heat is characterized
in this interval by the function Cs(�, T );

(iii) at T > Tc0, it transforms into the normal state, and the relevant property is [17]

Cn(T ) = π2

3
N(0)T . (2)

At the same time, the values of �0 scatter for various domains. The current carriers move
freely across domains and inside each domain acquire appropriate properties. The picture
adopted is especially suitable for superconductors with small coherence lengths ξ0 [13].

For simplicity, we restrict ourselves to the situation when the whole sample above Tc

is electronically homogeneous, i.e. is characterized by a common approximately constant
N(0) value. Therefore, we completely neglect possible electron wavefunction mismatches or
formation of potential barriers at the domain boundaries. Such an assumption is justified for
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an analysis of bulk thermodynamic properties or, e.g., the magnetic field penetration depth,
but may be invalid for transport phenomena, which fall beyond the scope of this publication.
Below Tc0 for a given mesoscopic domain, a corresponding isotropic gap appears on the Fermi
surface. The microscopic background of the assumed scatter in the Tc0s may be diverse but
ultimately manifests itself as a variation either of the electron–phonon interaction magnitude
or of local values of the Coulomb pseudopotential.

In the framework of our phenomenological approach, the superconductivity (if any) inside
a chosen domain is described by the relevant parameters �0 and Tc0. They are bounded from
above by �max

0 and Tc, respectively. These �0s may or may not group around a certain
crowding value �∗

0, depending on the sample texture. The existence of two such possibilities
is in accordance with the varied data for MgB2 [6–8, 13, 31]. The specific gap distribution is
described by the function f0(�0).

Thus, for all T in the interval [0, Tc], where Tc = max Tc0, the superconducting sample
consists of superconducting (s) and nonsuperconducting (n) grains more or less homogeneously
distributed over the sample volume.

The measured Cs(T ) is an averaged sum of contributions from the two phases:

〈C(T )〉 = 〈Cn(T )〉 + 〈Cs(T )〉, (3)

which depends on the distribution function f (�, T ) of superconducting domains, and on the
fraction ρn(T ) of the normal phase [19]:

〈Cn(T )〉 = Cn(T )ρn(T ), (4)

〈Cs(T )〉 =
∫ �max(T )

0
Cs(�, T ) f (�, T ) d�. (5)

Here �max(T ) = �BCS(�
max
0 , T ) and f (�, T ) is a result of the thermal evolution of the initial

(at T = 0) distribution function f0(�0). It is convenient to normalize all temperatures by Tc

and all energy parameters by �max
0 : t = T/Tc, δ = �/�max

0 with relevant indices retained,
and to consider Cs(T ) and Cn(T ) together with their averaged counterparts, normalized by the
Cn(Tc) value, i.e., cs,n(t) = Cs,n(T )/Cn(Tc). Then one can easily find that for each domain,
characterized by the parameter δ0 at t = 0, the dimensionless heat capacity is either

cn(t) = t, t > δ0 (6)

or

cs(t) = δ0cBCS

(
t

δ0

)
, t < δ0, (7)

where cBCS(x) is a well-known normalized heat capacity function for a standard BCS
superconductor [17]. For a surmised domain ensemble, a distribution function f (�, T ) for
finite T is defined by the formula

f (�, T ) d� = f0(�0) d�0. (8)

Then the dimensionless heat capacity takes the form

〈cs(t)〉 =
∫ 1

t
cBCS

(
t

δ0

)
f0(δ0)δ0 dδ0. (9)

Introducing a new variable z = t/δ0 and expanding the function f0(t/z) into a series, we arrive
at the proper low-t asymptotics:

〈cs(t → 0)〉 = t2
∫ 1

0

dz

z3
f0(0)cBCS(z) ≈ 2.45 f0(0)t2. (10)
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The t-dependence of the next term in the expansion for 〈cs(t)〉 can be estimated in the
limit t → 0 by substitution of the normalized expression (1) for cBCS(z). It turns out that this
expression decreases as O[t5/2 exp(− π

γ t )].
Now, in the same low-T region let us take a look at the contribution 〈cn(t)〉 of the

continuously expanding normal phase. At any T , all domains with �0 < π
γ

T (i.e. δ0 < t) are
nonsuperconducting, with the total normal phase fraction being

ρn(t) = ρn(0) +
∫ t

0
f0(δ0) dδ0. (11)

For simplicity, below we restrict ourselves to the case when all domains at t = 0 are
superconducting, i.e. ρn(0) = 0. A generalization to the case ρn(0) �= 0 is obvious: at each
temperature there exists an additional contribution from the normal phase. Then the function
f0(δ0) should be normalized by 1 − ρn(0), and all averaging-driven effects would accordingly
decrease. Moreover, if ρn(0) �= 0, the observed heat capacity 〈c(t)〉 must include an extra
linear contribution ρn(0)t in the true superconducting state exhibiting the Meissner effect.

As for the second term in the equation (11), the approximation of f0(δ0) by its limiting
value f0(0) demonstrates that the main temperature-dependent contribution to ρn(t) is linear
in t . Since cn(t) is also a linear function of t , the apparent contribution 〈cn(t)〉 of the normal
phase to the resulting specific heat 〈c(t)〉 is quadratic in t for small t , similarly to 〈cs(t)〉.
Thus, in the suggested model of the disordered superconductor with a broad continuous spatial
distribution of domains, possessing different Tcs, normal and superconducting contributions
to thermodynamical quantities are functionally indistinguishable from each other.

The analysis of equation (9) shows that it is a phase redistribution (superconducting versus
nonsuperconducting) in the ensemble rather than the presence of domains with infinitesimally
small δs which necessarily leads to the 〈cs(t)〉 power-law low-t asymptotics. From the
mathematical point of view this circumstance is reflected by the variability of the lower limits
of the integral in equation (9). And to obtain a power-law asymptotics persisting down to
T = 0, it is essential for the distribution function f0(δ0) to extend down to δ0 = 0. Otherwise,
in the vicinity of the zero temperature the 〈cs(t)〉 exponential dependence will be recovered.

Moreover, if there exists a certain δmin
0 such that f0(δ0) = 0 for all δ0 � δmin

0 , then for
t < δmin

0 the ‘effective’ lower limit of the integral (9) becomes constant. Then, taking into
account the exponential behaviour (1) it is easy to show that ultimately the integral (9) at t → 0
is a sum of two terms proportional to exp(− π

γ t ) and exp(− π
γ t δ

min
0 ), notwithstanding the f0(δ0)

profile in the interval δmin
0 � δ0 � 1. The latter will define the pre-exponential factors in

these two terms. This result is an alternative to the explanation of some experimental data
for MgB2 in the framework of the well-known two-gap model extensively developed by other
investigators [5, 32, 33].

3. Numerical results

In addition to the low-T asymptotics the overall T -dependence of the heat capacity C up to Tc is
also of considerable interest. Especially important is tracing the smearing of the anomaly �C
by the same effect of disorder which leads to the transformation of the intrinsic exponential
low-T behaviour of Cs(T ) into a power-law one. These objectives were met by numerical
calculations.

For this purpose, a Gaussian model distribution function f G
0 (δ0) was used:

f G
0 (δ0) ∝ exp

[
− (δ0 − δ∗

0)
2

2d2

]
. (12)
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Figure 1. (a) Temperature dependences of the normalized total electronic heat capacity 〈c(t)〉 in
comparison with the BCS dependence of the superconducting phase fraction. Gaussian distributions
with δ∗

0 = 1. (b) Low-temperature portions of the relevant curves on a log–log scale together with
their t2-asymptotics.

The parameter δ∗
0 designates the peak position, which may vary from 0 to 1. By changing the

parameter d we control the dispersion of the domain superconducting properties. Nevertheless,
for any d the function f G

0 (δ0) does not vanish in the limit δ0 = 0 and its Taylor series begins
with a constant as the main term. Only for highly improbable distribution functions, when
simultaneously f0(δ0) extends to δ0 = 0 and matches the condition f0(δ0 = 0) = 0, may the
Taylor series begin with the next term resulting in the asymptotics Cs(T ) ∝ T 3.

In figure 1 the dependences 〈c(t)〉 are depicted in panel (a) for δ∗
0 = 1 and different

dispersion values d . A substantial spreading of the anomaly �C readily seen in figure 1 seems
quite natural in view of the results for MgB2 [13–16]. However, the concomitant superposition
of various domain contributions distorts the whole of curves Cs(T ) and C(T ), which is much
less trivial. This very superposition leads for low T to the power-law behaviour, the asymptotics
of which was analysed above. The low-T parts of the curves 〈c(t)〉 are displayed on the log–log
scale in panel (b). Dotted straight lines correspond to the pertinent T 2-asymptotics for each
curve. It is clear that the validity range of the asymptotics extends with the increase of d .
Although intervals where the T 2-approximation holds good exist for any d , for small d it is
merely of academic interest, because both temperatures and heat capacities become too tiny
to be experimentally significant. On the other hand, for higher T in this case the averaged
dependences 〈c(t)〉 lie rather close to the exponential curve inherent to the BCS theory (the
dashed curve). Such transitional parts of the dependences 〈c(t)〉 describe well the exponential
low-T behaviour for some samples of MgB2 [16, 18] with smaller exponents than in the BCS
case.

For large d , when the Gaussian distribution function f G
0 (δ0) becomes almost uniform

(such a random dense, although quasi-discrete, distribution of gaps was found in point-contact
spectra [7]), the quadratic asymptotics is valid at least up to t = 0.1 (for the uniform distribution
f U
0 (δ0) = constant, the relative error of the t2-asymptotics is ≈0.6% at t = 0.1 and ≈5% at

t = 0.2), which agrees with the measurements [14]. For intermediate d the experimental data
in the relevant T -range may be satisfactorily represented by power-law curves C(T ) ∝ T n

with n � 2.
One can draw another important conclusion from the numerical data shown in figure 1.

A one-parameter fitting explains both the smearing of the heat capacity anomaly at Tc and
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the appearance of the power-law asymptotics. The latter reproduces the results appropriate
to superconductors with order parameters of the dx2−y2 wave [34] or extended s wave with
uniaxial anisotropy [13, 14] symmetry. The patterns displayed in these figures explain well
the experimental heat capacity dependences C(T ) for MgB2, which demonstrate power-law
behaviour for lowest attainable T [13, 14] or above the exponential low-T tail [18]. At the
same time, the reduction of the anomaly �C at Tc with the increase of d , traced in figure 1(a),
adequately describes the �C magnitudes inferred from the analysis of the observed total heat
capacity of MgB2, making allowance for crystal lattice and impurity components. That is,
µ ≈ 1.13 [16], 0.82 [13, 14], 0.7 [15], so the experimental specific heat jump is substantially
smaller than the BCS value µBCS.

4. Conclusions

The results obtained here are of a quite general nature and fit well the observed heat capacity
dependences both for cuprates and for magnesium diboride. Our main assumption is the
proposed large-scale (L > ξ0) spatial inhomogeneities of � (and Tc). As for cuprates, the
origin of those heterogeneities was discussed in our previous publications [19, 35]. On the
other hand, in MgB2 large enough inclusions (they influence the heat capacity!) of different
phases or planar defects may be the most probable cause of the � spread. One could mention,
e.g., observed MgB4 grains and stacking faults [36] or nonstoichiometry modelled by Mg1+δB2

phases [37]. X-ray analysis shows that MgB2 can be microscopically nonstoichiometric up to
5–10% [38]. However, we also cannot exclude the possibility of an electronic phase separation,
since the substance concerned is on the verge of the electronic topological transition [39, 40].

It should be noted that a somewhat related idea of multi-gap superconductivity with gap
diversity on different sheets of the Fermi surface, i.e. in the momentum space, was presented
for MgB2 [5, 6, 32, 41–43]. This is an extension of the well-known two-band superconductivity
concept [44], which, in its turn, approximates the complex anisotropy of the electron spectrum.
The expected observable results of the picture presented here and the two-band model differ
in the sense that in the latter case there should be two different gap parameters connected by
interband scattering matrix elements or gaps clustered into two groups [43]. On the other
hand, our gap distribution should be quasi-continuous due to the proximity effect. Our point
of view is directly supported by the point-contact observation of gap values in the interval
between the so-called large and small gaps [7]. Although the relevant gap-maxima histogram
corresponds to different contacts, it reflects properties of various contact areas of the same
pellet. Another argument for the validity of the spatial gap distribution is the disappearance of
the gap averaging for samples of better quality in the same experimental set-up [12]. Finally,
a three-gap structure was also seen in the tunnel spectra [45].

To summarize, we presented a phenomenological model of the disordered s-
wave superconductor with a random domain network possessing continuously varying
superconducting properties. The spatially averaged electronic heat capacity 〈C(T )〉 is
calculated. It is shown that its low-T asymptotics is a power-law one ∝T 2, whereas the
anomaly �C at Tc is simultaneously smeared. These are just the features appropriate to the
heat capacity of MgB2 and cuprates.
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